2020年8月26日 星期三

重力理論的演進與環繞黑洞的恆星

(原文刊載於泛科學

十七世紀末,牛頓提出的萬有引力理論象徵現代天體力學的開始;人們利用物理原理來描述天體運行,並藉由天文觀測逐步修正理論或計算方法的缺失。以天王星的發現為契機,科學家開啟了一連串對行星軌道的研究;這些事件不但成為天體力學發展史的重要標誌,最終竟促成重力理論的演進,甚至延續到現今,反應在我們對黑洞的觀察上。 這一切,都要從 1781 年,英國天文學家赫雪爾(William Herschel,1738-1822)在自家庭院,從望遠鏡中看到一顆彗星說起…… 

天王星的詭異行徑 

在赫雪爾將發現回報給皇家學會後,其他科學家也紛紛對這顆彗星進行調查。很顯然的,它似乎沒有彗星尾巴,而且運行軌跡較接近圓形,不像其他彗星以非常扁的橢圓軌道繞行太陽;與其說是彗星,它更像是在土星軌道之外環繞太陽的行星──這就是天王星的發現。 

儘管已驗明正身,天王星仍然困惑著接下來數十年的天文學者:它的實際軌道和牛頓萬有引力理論的預測並不相同。這是牛頓理論的失敗嗎?還是觀測錯誤了呢?1846 年,法國天文學家勒維耶(Urbain Le Verrier,1811-1877)利用數學計算提出預測:存在某個未知星體影響了天王星的運行,造成理論和觀測的差異;他也指出該星體的軌道、質量和位置大約為何。 

一陣子之後,柏林天文台收到勒維耶的報告,便馬上著手進行未知星體的搜尋工作;只花不到一個小時,海王星就被找到,與勒維耶預測的位置相差不到一度──史上第一次,單純憑藉數學計算發現新行星[1]

奧本‧勒維耶(圖片來源

水星的運行軌道也存在異常 

隨著海王星的發現,牛頓萬有引力理論可說獲得空前勝利。然而,天文學家拿重力理論來推估行星運行的嘗試並未到此為止。1859年,勒維耶再度出擊,聲明水星軌道的進動也跟牛頓萬有引力理論的計算有所出入。 

在理想狀況下,依據牛頓萬有引力理論,水星環繞太陽的運行軌道應該要固定不變;然而在實際上,因為受到其他行星的重力拉扯(和另外一些次要因素),水星軌道的近日點(以及軌道本身)會緩慢產生變化──這稱為水星的近日點進動。 

不止水星,其他行星也都會有進動;只是水星距離太陽最近,進動效應最明顯。圖為地球繞行太陽的軌道進動示意;進動效應被刻意放大。(圖片來源

勒維耶分析了從 1697 年到 1848 年的水星觀測資料,發現水星的近日點進動,與用牛頓萬有引力理論考慮其他行星的影響所算出來的進動數值,每世紀差了三千六百分之三十八(38/3600)度[2]──這是多麼微小的數值,卻又真實存在! 

因為之前海王星的成功經驗,勒維耶猜想:介於太陽和水星軌道之間,可能存在未曾發現過的星體,影響了水星的運行;他將其命名為瓦肯星(Vulcan)[3]。 無奈地,這一次任憑天文學家花費幾十年尋找,甚至勒維耶也已去世良久,瓦肯星始終不見蹤影;而水星近日點進動問題便懸而未決,延續到二十世紀。在 1915 年,愛因斯坦才利用廣義相對論成功將此問題劃上句點。 

愛因斯坦在1915年的論文中,運用廣義相對論解決了水星的近日點進動問題。(圖片來源

根據我們目前所知,水星的近日點每世紀會移動約 574/3600 度,其中牛頓萬有引力效應佔了 532/3600 度,而廣義相對論造成的效應幾乎剛好就是兩者之差。廣義相對論針對牛頓萬有引力定律所描述的重力,做出了細緻的修正──這個修正在大多數狀況下,微小到可以忽略;只有在水星近日點進動這樣的例子,差異才會顯現出來。可以說,水星近日點進動問題的解決,是幫助廣義相對論得到世人認可的重要原因之一。 

廣義相對論的黑洞測試
 
科學家拿星體運行來測試重力理論的故事就到此為止了嗎?非也。

既然原本得到廣泛驗證的牛頓萬有引力定律,因水星近日點進動現象而被找到缺陷,那麼現在大獲全勝的廣義相對論,自然也有可能在某種特殊環境下暴露弱點──科學家於是把腦筋動到了黑洞頭上。 黑洞堪稱宇宙裡數一數二極端的天體,龐大的重力吞噬一切,無疑是測試重力理論的理想選擇。就像水星繞行太陽會產生進動,是否,繞行黑洞的星體,其軌道也會有進動現象呢?又是否完全可以用廣義相對論來解釋? 

針對廣義相對論的正確性問題,一群科學家團隊花了二十七年,觀測環繞無線電波源人馬座A*(Sagittarius A*)運行的恆星S2,並於今年(2020)四月,在《Astronomy & Astrophysics》期刊發表最新成果。 

人馬座A*位於銀河系中心,距離地球約兩萬六千光年,質量估計為四百多萬倍太陽質量,據信極可能是超大質量黑洞;環繞於外的 S2 具有十多倍太陽質量,與人馬座A*的最近距離是十七光時(海王星到太陽距離的四倍),軌道週期為 16 年(海王星軌道週期是 165 年)。研究發現,S2近心點(pericenter,最靠近重力中心的點)的進動約為每軌道週期 12/60 度,與廣義相對論的預測相符──即使在重力如此強大的環境,廣義相對論依舊通過試煉。 

藝術家描繪的S2繞行人馬座A*示意圖;為了清楚顯現 S2 軌道因為進動而逐漸改變位置,進動效應被特意放大。(ESO/L. Calçada

本次研究的意義 

儘管沒有發現廣義相對論的破口,這次的成果仍然別具意義:它是人類第一次確認以黑洞為中心的進動現象;再者,若人馬座A*附近存在某些看不見的物質(如暗物質,或其他小型黑洞等等),科學家也能依據數據給出嚴格的質量上限。可以肯定的是,隨著觀測技術的發展,我們對於宇宙、或者黑洞的理解,將持續進步;說不定哪天,還真能發現廣義相對論的問題呢。 

參考資料 註釋
  • [1] 實際上,勒維耶計算出的海王星軌道,與真正的海王星軌道仍有一些差距。但這並無礙於發現海王星的偉大成就。
  • [2] 多年後,其他科學家重新評估牛頓萬有引力理論和實際觀測的差距,得出每世紀三千六百分之四十三(43/3600)度的數值,跟現代觀測吻合。
  • [3] 就跟《星際爭霸戰》(Star Trek)裡的瓦肯星同名。不過可以確定勒維耶並不是因為看了《星際爭霸戰》才這麼命名的。

沒有留言:

張貼留言